References


General Mechanism of Bisphosphonates:

  1.  Bisphosphonate Hydroxyapatite Interactions:  Differential Properties Important in Their Mechanism of Action on Bone. Nancollas, G., Tang, R., Henneman, Z. J., Phipps, R. J., Gulde, S., Wu, W., Mangood, A., Russell, R. G. G., Ebetino, F. H. 2006, Bone, 38(5): 617-627.
  2. The Molecular Mechanism of Nitrogen-Containing Bisphosphonates as Anti-Osteoporosis Drugs: crystal structure and inhibition of human farnesyl pyrophosphate Synthase. Kavanagh, K. L., Guo, K., Dunford, J. E., Wu, X., Knapp, S., Ebetino, F. H., Rogers, M. J., Russell, R. G. G., and Oppermann, U. 2006 PNAS, 103(20):7829-7834.
  3. Mechanisms of Action of Bisphosphonates: Similarities and Differences and Their Potential Influence on Clinical Efficacy. Russell, R. G. G., Watts, N. B., Rogers, M. L., Ebetino, F. H. 2008, Osteoporosis International, 19(6): 733-759
  4.  Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Roelofs, A. J.; Thompson, K.; Ebetino, F. H.; Rogers, M. J.; Coxon, F. P. 2010, Current Pharmaceutical Design, 16(27): 2950-2960.
  5. The Relationship Between the Chemistry and Biological Activity of the Bisphosphonates. Ebetino, F. H., Hogan, A. M., Sun, S., Tsoumpra, M. K., Duan, X., Triffitt, J. T., Kwaasi, A. A., Dunford, J. E., Barnett, B. L., Oppermann, U., Lundy, M. W., Boyde, A., Kashemirov, B. A., McKenna, C. E., Russell, R. G. G. 2011, Bone, 49(1):20-33.
  6.  Bisphosphonates: The first 40 years. Russell, R. G. G. 2011, Bone, 49(1):2-19
  7.  “Antiresorptives” — The Duration and Safety of Osteoporosis Treatment: Anabolic and Antiresorptive Therapy. Russell R. G. G., Tsoumpra M. K., Lawson M., Chantry A. D., Ebetino F. H., Pazianas M. Editors: Stuart Silverman and Bo Abrahamsen. Chapter 2. pp. 17-36. Springer Publishers. 2016. In press ISBN: 978-3-319-23638-4 (Print) 978-3-319-23639-1 (Online)

 

Fluorescent BPs

  1. Synthesis of drug conjugates through epoxide containing linkers. U.S. Pat. Appl. Publ. McKenna, Charles E.; Kashemirov, Boris A.; Bala, Joy Lynn F. 2008, US 20080312440 A1 20081218
  2. Fluorescently Labeled Risedronate and Related Analogues: “Magic Linker” Synthesis. Kashemirov, B. A.; Bala, J. L. F.; Chen, X.; Ebetino, F. H.; Xia, Z.; Russell, R. G. G.; Coxon, F. P.; Roelofs, A. J.; Rogers, M. J.; McKenna, C. E. 2008, Bioconjugate Chemistry,  19(12):  2308-2310.
  3. Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. Roelofs, Anke J.; Coxon, Fraser P.; Ebetino, Frank H.; Lundy, Mark W.; Henneman, Zachary J.; Nancollas, George H.; Sun, Shuting; Blazewska, Katarzyna M.; Bala, Joy Lynn F.; Kashemirov, Boris A.; Khalid, Aysha B.; McKenna, Charles E.; Rogers, Michael J. 2010, Journal of Bone and Mineral Research,  25(3): 606-616.
  4. Near-Infrared Fluorescent Probe Traces Bisphosphonate Delivery and Retention in vivo. Kozloff, K. M., Volakis, L. I., Marini, J. C., Caird, M. S. 2010 Journal of Bone and Mineral Research,  25(8):  1748-1758.
  5. Synthesis and Characterization of Novel Fluorescent Nitrogen-Containing Bisphosphonate Imaging Probes for Bone Active Drugs. Sun, Shuting; Blazewska, Katarzyna M.; Kashemirov, Boris A.; Roelofs, Anke J.; Coxon, Fraser P.; Rogers, Michael J.; Ebetino, Frank H; McKenna, Michael J.; McKenna, Charles E.  2011, Phosphorus, Sulfur and Silicon and the Related Elements, 186(4):970-971.
  6. Bisphosphonate Binding Affinity Affects Drug Distribution in Both Intracortical and Trabecular Bone of Rabbits. Turek, John; Ebetino, F. Hal; Lundy, Mark W.; Sun, Shuting; Kashemirov, Boris A.; McKenna, Charles E.; Gallant, Maxime A.; Plotkin, Lilian I.; Bellido, Teresita; Duan, Xuchen; Triffitt, James T.; Russell, R. Graham G.; Burr, David B.; Allen, Matthew R. 2012, Calcified Tissue International, 90(3): 202-210
  7. Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo. Roelofs, A. J., Stewart, C. A., Sun, S., Blazewska, K. M., Kashemirov, B. A., McKenna, C. E., Russell, R. G. G., Rogers, M. J., Lundy, M. W., Ebetino, F. H., Coxon, F. P. 2012 Journal of Bone and Mineral Res.  27(4): 835-847.
  8. Equilibrium-dependant bisphosphonate interaction with crystalline bone mineral explains anti-resorptive pharmacokinetics and prevalenc of osteonecrosis oft he jaw in rats. Hogoku, A, Sun, S, Park, S, McKenna, CE, Nishimura, I. 2013 Bone 53:59-68.
  9. Jaw bone marrow-derived osteoclast precursors internalize more bisphosphonate than long-bone marrow precursors. Vermeer JA, Jansen ID, Marthi M, Coxon FP, McKenna CE, Sun S, de Vries TJ, Everts V. Bone. 2013 Nov;57(1):242-51.
  10. Development of osteomucosal tissue constructs in vitro and bisphosphonate localization. Bae S., Sun S., Aghaloo T., Oh JE, McKenna CE, Kang MK, Shin KH, Tetradis S, Park NH, Kim RH., International Journal of Molecular Medicine. 2014;34(2):559-563.
  11. Bisphosphonate Uptake in Areas of Tooth Extraction or Periapical Disease. Cheong S, Sun S, Kang B, Bezouglaia O, Elashoff D, McKenna CE, Aghaloo TL, Tetradis S. Journal of Oral and Maxillofacial Surgery. 2014;72(12):2461-2468.
  12. Real-Time Intravital Imaging Establishes Tumor-Associated Macrophages as the Extraskeletal Target of Bisphosphonate Action in Cancer. Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, Parker A, Nguyen A, Sun S, Kashemirov B, McKenna CE, Croucher PI, Swarbrick A, Weilbaecher K, Phan TG, Rogers MJ. Cancer discovery. 2015; 5(1): 35-42.
  13. Endocytotic Uptake of Zoledronic Acid by Tubular Cells May Explain Its Renal Effects in Cancer Patients Receiving High Doses of the Compound. Verhulst A, Sun S, McKenna CE, D’Haese PC. Plos ONE. 2015; 10(3): e0121861.
  14. Bisphosphonate-induced differential modulation of immune cell function in gingiva and bone marrow in vivo: Role in osteoclast-mediated NK cell activation.  Tseng HC, Kanayama K, Kaur K, Park SH, Park S, Kozlowska A, Sun S, McKenna CE, Nishimura I, Jewett A. Oncotarget, 2015; 6(24): 20002-20025.
  15. Fluorescent bisphosphonate and carboxyphosphonate probes:  a versatile toolkit for applications in bone biology and biomedicine. Sun S., Blazewska K. M., Kadina A. P., Kashemirov B. A., Duan X. C., Triffitt J. T., Dunford J. E., Russell R. G. G., Ebetino F. H., Roelofs A. J., Coxon F. P., Lundy M. W.,  McKenna, C. E. (2015) Bioconjug. Chem. Dec 8. [Epub ahead of print]. DOI: 10.1021/acs.bioconjchem.5b00369

Abstracts

  1.  2-Photon imaging reveals macrophages and MDSC as the cellular targets for the anti-tumor activity of bisphosphonates in vivo. AJunankar S, Phan TG, McKenna CE, Sun S, Rogers MJ. NZBMS 23rd ANNUAL SCIENTIFIC MEETING, Melbourne, Victoria, Australia, 8-11 September 2013.  Outstanding Abstract, Biomedical Presentation. https://www.anzbms.org.au/documents/ANZBMS2013ASMHandbook.pdf p 31
  2. Anti-tumour effects of bisphosphonates: looking beyond the skeleton. Michael J Rogers, Julie Jurczyluk, Naveid Ali, Simon Junankar, Charles E McKenna, Shuting Sun, and Tri Giang Phan1. ANZBMS 23rd ANNUAL SCIENTIFIC MEETING, Melbourne, Victoria, Australia, 8-11 September 2013. https://www.anzbms.org.au/documents/ANZBMS2013ASMHandbook.pdf p 319
  3.  INTRAVITAL IMAGING REVEALS TUMOUR-ASSOCIATED macrophages as targets of bisphosphonateS IN VIVO. Simon Junankar, Tri G Phan, Charles E McKenna, Shuting Sun, Michael J Rogers. 26th Lorne Cancer Conference, Lorne, Victoria, Australia, 13 – 15 February 2014
  4. Skeletal Retention and Urinary Excretion of Nitrogen-Containing Bisphosphonates Including Fluorescently-labeled Bisphosphonates in Rats. Lundy, M. W., Sun, S., Duan X., McKenna, C. E., Jeans, G., Dobson, R., Quijano, M., Triffitt, J. T., Russell, R. G. G., Ebetino, F. H. 2014, Journal of Bone and Mineral Res.  29(S1): S262.